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Abstract. We find the Hopf algebr#, , dual to the Jordanian matrix quantum gra@ip, 5 (2).

As an algebra it depends only on the sum of the two parameters and is split into two subalgebras:
.. (with three generators) and(Z) (with one generator). The subalgel&Z2) is a central

Hopf subalgebra ot/ ,. The subalgebra{’ » 1 not a Hopf subalgebra and its co-algebra

structure depends on both parameters. We discuss also two one-parameter specigldses:

andg = —h. The subalgebra{h , 1S a Hopf algebra and coincides with the algebra introduced

by Ohn as the dual ofL;(2). The subalgebra/” o is isomorphic toU (s/(2)) as an algebra

but has a nontrivial co-algebra structure and again is not a Hopf subalgebta, gf

1. Introduction

The groupG L(2) admits two distinct quantum group deformations with a central quantum
determinant.:GL,(2) [1] andGL,(2) [2,3]. These are the only possible such deformations
(up to isomorphism) [4]. Both may be viewed as special cases of two-parameter
deformations: GL, ,(2) [2] and GL, »(2) [5]. In the initial years of the development
of quantum group theory mostlgL,(2) and GL, ,(2) were considered. More recently
research has been started 8A,(2) and its dual quantum algebr&,(s/(2)) [6]. In
particular, aspects of differential calculus [5], and differential geometry [7] were developed,
the universalR-matrix for U,(sl(2)) was given in [8-10], representations of,(s/(2))
were constructed in [11-14], contractions &f.,(2) and U, (sl(2)) were given in [15].
However, there are no studies until now of the two-parameter Jordanian matrix quantum
groupGL, ;(2). Even the dual of this algebra is not known.

This is the problem we solve in this paper. We find the Hopf algélya dual to
the Jordanian matrix quantum groupL, ,(2). As an algebra it depends on the sum
g = (g +h)/2 of the two parameters and is split into two subalgebrag:, (with
three generators) and(Z) (with one generator). The subalgelvd2) is a central Hopf
subalgebra o/, ,. The subalgebr#, , is not a Hopf subalgebra and its coalgebra structure
depends on both parameters. We discuss also two interesting one-parameter special cases:
g = h andg = —h. The subalgebré(, , is a Hopf algebra and coincides with the algebra
introduced by Ohn as the dual 8£.,(2). The subalgebré/’ , , is isomorphic toU (s/(2))
as an algebra but has a nontrivial coalgebra structure and again is not a Hopf subalgebra of
U_p.p-

§ E-mail address: dobrev@ictp.trieste.it

0305-4470/97/196769+13$19.5@C) 1997 IOP Publishing Ltd 6769



6770 B L Aneva et al

The paper is organized as follows. In section 2 we recall the g@ap ,(2). In
section 3 we first recall the method (developed by one of us) of finding the dual. We
then make a change of generators and introduce the appropriate PBW bésis iri2).

We find the dual algebr#, , and we give explicitly its algebra and coalgebra structure in
propositions 1 and 2. We make a further change of basis in order to bring the algebra to a
form closer to Ohn’s [6]. Our main result is summarized in a theorem. We also introduce a
subalgebral?lg,,, of U, », with a basis such that no exponents of generators appear explicitly
in the algebra and coalgebra relations. In section 4 we consider the two interesting one-
parameter special cases= h andg = —h recovering the algebra of [6] in the first special
case. In the appendix we apply the nonlinear map of [12] to our dual algebra.

2. Jordanian matrix quantum group GLg ,(2)

In this section we recall the Jordanian two-parameter deformatién ,(2) of GL(2)
introduced in [5] (and denotedL, ;). One starts with a unital associative algebra generated

by four elements:, b, ¢, d of a quantum matrisM = <i Z) with the following relations
(g,h € C):

[a,c] = gc? [d, c] = h? [a,d] = gdc — hac

[a,b] = h(D — d?) [d,b] = g(D —d?) [b, c] = gdc + hac — ghc? (2.1)

D = ad — bc + hac = ad — cb — gdc + ghc?
whereD is a multiplicative quantum determinant which is not central (unfessh):
[a,D] =[D,d] = (g — h)Dc [b,D] = (g — h)(Dd — aD) [c, D] =0. (2.2)

Relations (2.1) are obtained by applying either the method of Fadeleal[16], hamely,
by solving the monodromy equation:

RM;M; = MoM;1R
(M1 = MQ®l,, My = 1L,®M), with the R matrix:

1 —h h gh
10 1 0 —g¢

R=10 o 1 ¢ (2.3)
0 0 0 1

or the method of Manin [17] usiniyl as transformation matrix of the appropriate quantum
planes [5].

The above algebra is turned into a bialgeAta, (2) with the standards L(2) co-product
8 and co-unite:

sl b\ _ [(a®a+b®c a®b+b®d 2.4)
c d T \e®a+d®c c®b+d®d '

(€ 2)= (o 3) @

From (2.4), resp. (2.5) it follows:
3(D)=D®D e(D) =1. (2.6)
Further, we shall suppose thRtis invertible, i.e. there is an elemef ! which obeys:
pPD =D D=1, (D YH=p1eD? e YH=1 (2.7
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(Alternatively one may say that the algebra is extended with the elefeh) In this case
one defines the left and right inverse matrix\f[5]:

ML =D1<d+gc —b+g(d—a)+g2c>

—c a—gc

(2.8)

(d+hc —b+h(d—a)+h2c> 4
— D
—c a—hc

The quantum grouf L, ;(2) is definedas the Hopf algebra obtained from the bialgebra
A1 (2) whenD~1 exists and with antipode given by the formula:

y(M)=M1= y@D) =D y(D™YH =D. (2.9)

For ¢ = h one obtains fronG L, ,(2) the matrix quantum grouL;(2) = GLj 4(2),
and, if the conditionD = 14 holds, the matrix quantum grougL;(2). Analogously, for
g = h = 0 one obtains fronGL, ;(2) the algebra of functions over the classical groups
GL(2) andSL(2), resp.

3. The dual of GLy 1 (2)

3.1. Summary of the method

Two bialgebrad/, A are said to ben duality [18] if there exists a doubly nondegenerate
bilinear form

(Y:Ux A—C (Y (u,a)—~{(u,a) ueld acA (3.1
such that, fom, v e U, a, b € A:

(u, aby = (6y(u), a @ b) (uv,a) = (u® v, d4(a)) (3.29)

(L, a) = eala) (u, 14) = ey(u). (3.20)

Two Hopf algebragd/, A are said to bén duality [18] if they are in duality as bialgebras
and if

(vu(u), a) = (u, ya(a)). (3.)

It is enough to define the pairing (3.1) between the generating elements of the two
algebras. The pairing between any other elements, of follows then from relations (3.2)
and the standard bilinear form inherited by the tensor product.

The duality between two bialgebras or Hopf algebras may be used also to obtain the
unknown dual of a known algebra; for that it is enough to give the pairing between the
generating elements of the unknown algebra with arbitrary elements of the PBW basis
of the known algebra. Using these initial pairings and the duality properties one may
find the unknown algebra. Such an approach was first given by Sudbery [19]. He
obtainedU, (s/(2)) ® U(u(1)) as the algebra of tangent vectors at the identity5af, (2).

The initial pairings were defined through the tangent vectors at the identity. However,
such calculations become very difficult for more complicated algebras. Thus, in [20] a
generalization was proposed in which the initial pairings are postulated to be equal to the
classical undeformed results. This generalized method was applied in [20] to the standard
two-parameter deformatio@ L, ,(2), (where also Sudbery’s method was used), then in [21]

to the multiparameter deformation 6fL(n), and in [22] to the matrix quantum Lorentz
group of [23]. One should note that the dual GL, ,(2) was obtained also in [24] by
methods ofy-differential calculus.



6772 B L Aneva et al

3.2. Change of basis fat L, »(2) and generators of the dual algebra

In the present paper we apply the method of [20] to find the du&fbf ,(2). Following

[20] we first need to fix a PBW basis &L, ;(2). At first one may be inclined to use

a PBW basis as the one introduced in [6] for the case &, namely consisting of all
monomialsa*d‘b™c", wherek, £, m,n € Z, . (Actually, the basis in [6] is foSL,(2) and

is obtained by restricting to indices fulfilling¢ = 0.) However, the calculation with such

a basis are more difficult. Our analysis showed that it would be simpler to work with the
following PBW basis:

akd'c"b" k.,t,m,neZ, (3.3)

the explanation being that the elementsi, c generate a subalgebra (though not a Hopf
subalgebra) oG L, ;(2), cf the first line of (2.1). Further simplification results if we make
the following change of generating elements and parameters:

=2(a+d) :2(a—d)
g=§(g+h) =§(g—h).

With these generating elements and parameters the algebra relations become:

(3.4)

cd = adc — gc? cd =dc — he? dia = ad — gdc + hac
bi = ab + gcb — 2had + 2gd? + (3% — h®ac + g(h? — §%)c?
bd = db — hcb + 2gad — 2hd® + (h® — §%)dc + h(g% — h?)c? (3.5)
be = cb + 23dc — 2hdc + (h? — §%)c?
D =a?—d*—chb+ (g% — h®)c? — gac + hdc.
Note that these relations are written in anticipation of the PBW basis:
f = foomn =adc"p" k,t,m,ne€Z,. (3.6)

Note also that the relations in the subalgebras generateddy anda, d, ¢ are isomorphic
under the changeura, did, cr>c, g g, h—h, cf the first lines in (2.1) and (3.5).
The co-algebra relations become:

s((@ b)\_(i®a+d®d+3b®c+3c®b a®b+d®b+b®aI—bod
c d C®a+c®d+a®c—d®c a®d+d®d+3b®c—3c®b
(3.7)

)=(s 9) e

>>:D_1<a —d+ @+ he —b—2(§—~i—ﬁ)d~+(g+fl)2c>

<
N
N
o ™
AL T

—c a+d—(g+h)
_(a-d+@—hc —b+2h—3d+E—h%*\ 1
_( —c a+d+ (h—3)c >D ) (3.9)

Let us denote by, , = U, »(gl(2)) the unknown yet dual algebra 6fL, ;(2), and by
A, B, C, D the four generators afl, ,. Following [20] we shall define the pairingZ, f),
Z=A,B,C,D, fis from (3.6), as the classical tangent vector at the identity:

a ~
(Z, ) Eg<8j;> (Z,y)=(A,a),(B,b),(C,c), (D,d). (3.10)
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From this we obtain the explicit expressions:

(A, f)=¢ <z]aj) = kd¢081m03n0 (3.119)
)

(B, f) =¢& <8‘};) = 8000m16,0 (31]b)
a

(C.f)=¢ (8];) = 8008m08n1 (3.1%c)
af

D, f)= — | = 8¢18m00n0- 3.1d

(D, f)=¢ (ad) ¢16m06n0 ( )

3.3. Algebra structure of the dual

First we find the commutation relations between the generatots, pf Below we shall
need expressions like' & which we define as formal power serie§'e= 1, + 3" %BP.
We have:

Proposition 1.The commutation relations of the generatdrsB, C, D introduced by (3.11)
are:

[B,C]=D (3.120)
(DB = L& ~ 1 (3.12)
[D,C]=—-2C+3D*— A (3.1%)
[A,B]=0 [A,C] =0 [A, D] = 0. (3.120)

Proof. Using the assumed duality the above relations are shown by calculating their
pairings with the basis monomialg = akd‘c"b™ of the dual algebra. In particular, the
pairing of f = a*d‘c"b™ with the commutators is:

([B’ C]v f> = 8¢18,n06,0 (31&)

([D. B]. f) = 8100m18,02" g" " (3.1%)

([Da C]a f) = _28(05m05nl + 2g8£28m08n0 (31&)
{ 1 r=s

0,5 = (3.13)
0 r<s.

To calculate a commutatof W, Z], f) one first calculatesW Z, f) and (ZW, f). The
pairing of any quadratic monomial of the unknown dual algebra vfite= a*d‘c"b™ is
given by the duality properties (3.2):

J

(WZ., f) = (W®Z.54(f)) = <W ®Z, Y fi® f,> =Y (W, F)NZ, f]) (3.14)
j

where f/, f/" are elements of the basis (3.6) and so further a direct application of (3.11)
is used. We should note that these calculations though complicated do not require explicit
knowledge ofs 4(f) = Zj fj/ ® fj” for all f, and furthermore not all terms in the sums
are necessary. In particular, while calculatifig( /) one may neglect terms containing

the element on either side of the tensor sign in second and higher degrees even before
reordering the terms to the basis monomials, since from the commutation relations it is clear
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that those terms will not produce any term withn zero or first degree, and aryy ( fj”)
containingc in second and higher degrees will give zero in (3.14) for #8hyZ). For the
same reasons, iV # C (Z # C) one may neglect terms containing the elemen the

left (right) side of the tensor sign in the first degree even before reordering the terms to
the basis monomials. Similar reasons hold for the elemént3aking into account such
simplifications one may find the pairings of the quadratic monomials necessary for (3.13),

e.g.

(BC. f) = 381180850 + 181811850 + 8008,00m23 (8% — hHZ" % + 8108m1dn1 (3.1%)
(CB, f) = —38018m0810 + h8118m1840 + 8:08,00m25 (8> — h)Z" 2 + 8:08m181  (3.150)
(DB, f) = 8:08,0(8m1 + 022" 28" 2(g — h)) (3.1%)
(BD, f) = —8108,0(8m1 + 0m22" "% + h)) (3.15d)
(DC, f) = —8408m08n1 + (7 + 8)8028m08n0 + k86160850 + 8¢18m08n1 (3.1%)
(CD, f) = 8:08m08n1 + (h — 8)8¢28m0850 + k&81810810 + S¢18m08n1- (3.15)

Note that quadratic relations (3.15) depend on both parameters, while the commutation
relations (3.13), which follow from (3.15), depend only on the paramgter
Now in order to establish (3.8 it is enough to compare the RHS of (3d)3and
(3.11d). Further, for relation (3.1 we use (3.1B) and:
(Bp’ f> = p!BZOBmpSnO (3151)

(proved by induction) and its consequence:

_ (23)P (28)? - .
(€38 — 1), )= 7g|) (BP. f)=) g' P'8008mpSn0 = (28)" 8¢00m18n0.  (3.15)
p: p:
peN peN
To establish (3.1@ we compare the RHS of (3.&Bwith the appropriate linear combination
of the RHS of three equations, namely (3),1(3.11c) and

(D2, f) = 28¢28,108,0 + kS£08m08s0- (3.1%)
This finishes the proof. O

Note that the commutation relations (3.12) depend only on the paragetad that
the generator is central. This is similar to the situation of the dual algel#fg, of the
standard matrix quantum groupL, , the commutation relations of which depend only on
the combinationy” = ,/pg and also one generator is central [24,20]. Here the central
generator appears as a central extension but this is fictitious since this may be corrected by
a change of basis, namely, by replacing the genex@tby a generator:

Czé—%A. (3.16)
With this only (3.12) changes to:
[D,C] = —2C + gD>. (3.12)

Besides this change we shall make a change of generating elemefits, of order to
bring the commutation relations to a form closer to the algebra of [6]. Thus, we make the
following substitutions:

D =¢e8He’B (3.173)

C=e'Bye's _ %sinlr(gB)eW“’)B - %A. (3.170)



Duality for the Jordanian matrix quantum groupL, ,(2) 6775

Substituting (3.17) into (3.18) we obtain the desired resulB] Y] = H if we choose:u’ =
u, v' = v. Substituting (3.17) into (3.1 we obtain the desired resultl| B] = 5 sinh(gB)
if we choose:u + v = g. Thus with conditions:

!

w+v=2g w=u Vi=v (3.17%)
we obtain the following commutation relations instead of (3.12):

[B,Y]=H (3.18)

[H, B] = gsinh(gB) (3.1%)

[H,Y] = —Y coshgB) — coshigB)Y
= —2Y coshgB) — gH sinh(gB) + g sinh(g B) cosh(g B) (3.1&)
[A,B]=0 [A,Y]=0 [A,H]=0. (3.18)

Note that relations (3.5}, (3.1&), (3.1&) coincide with those of the one-parameter algebra
of [6], (cf section 4.1), though the coalgebra structure is different as we shall see below.
We can use this coincidence to derive the Casimir operatof, gf

Co = fi(A)C2+ f2(A)

Co = 1(H?+sinf(gB)) + %(Y sinh(gB) + sinh(gB)Y) (319
where f1(A), f2(A) are arbitrary polynomials in the central generatorTo derive (3.19)
it is enough to check thatC}, Z] = 0 for Z = B, Y, H. The latter follows also from the
fact [25] thatC; is the Casimir of the one-parameter algebra of [6].

Finally we also write a subalgebi;}g,h of U, , with the basis: A, K = e¢# = K+,
Kl1=e?% =K~ Y, H,sothatinterms ofd, K, K~%, ¥, H no exponents of generators
appear in the algebra and coalgebra relations. Thus instead of (3.18) we have:

[K*, Y] =+3HK* + %(114 — K*?) (3.2(n)
[H,K¥) = K*2 -1, (3.2)
[H Y]=-Y(K+KH+ %H(K‘l —K)+ %(1@ —K7? (3.2(@)
KK 1=Kk =1, (3.20")
[A,K]=[A, K 1=0 [A,Y]=0 [A, H] =0. (3.20d)

3.4. Co-algebra structure of the dual
We turn now to the coalgebra structureldf,. We have:

Proposition 2.(i) The comultiplication in the algebr&, , is given by:

A=A +1y®A (3.21a)

SuB)=B®1,+1,®B (3.21b)
72

su¥)=Yeetltefgy— hf sinh(gB) ® A%e %% + hH ® Ae 8P (3.2
g

- i 2h -
Sy(Hy=H®e*® + e @ H— —sinh(gB) ® Ae 45, (3.21d)
8
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(if) The co-unit relations irl4, , are given by:
eu(Z) =0 Z=A,B,Y H. (3.22)

(iii) The antipode in the algebr®, , is given by:

Yu(A) = —A (3.23)
yu(B) = —B (3.2%)
o 72 I )
yw(¥) = —e8ye! + = sinh(gB)A% + he !B H Aet? (3.2%)
g
—ZB 17 B 2h
yu(H) = —e " He!” — — sinh(gB)A. (3.23)
g

Proof. (i) We use the duality property (32 namely we have
(Z, f1f2) = (Su(Z2), 1 ® f2)

for every generatof of U, , and for everyfi, f> € GL, 4(2). Then we calculate separately
the LHS and RHS and comparing the results prove (3.21). The check of)3(3121) is
easy. Instead of (3.2}, (3.21d) we first find the coproduct of the original generat6tsD:

uC)=Ce1l,+8 e C+ %g(eng — 1) ® (3?°A—h?’A>) +hD® A (3.21¢)

Su(D) = D®1u+e2§3®0+’gf(1u—e2§3)®fx (3.21d)

and then (3.2d), (3.21d) follow. To check (3.2%") the following choices are crucial:
(f1, fo) = (@ dtc"b™, 1), ™, ¢), (b™,a%), (d*, a*). To check (3.24") the crucial choices
are: (f1. fo) = @d'c"v™, 1), (b". d), (b"., a").

(i) Formulae (3.22) follow frome;,(Z) = (Z, 1), cf (3.2b), and using the defining
relations (3.11).

(iii) Formulae (3.23) follow from (3.2) or by using the following Hopf algebra axiom
[18]:

mo(id® yy)ody =ioey (3.24)

wherem is the usual product in the algebrai(Z @ W) = ZW, Z, W € U andi is the
natural embedding of into U: i(v) = vl,,v € F. This is applied in our case with
U—U, i, F = C, to the elementst, B, Y, H and using (3.21) and (3.22). O

Corollary 1. For later reference we mention also the coproduct and antipode of the
intermediate generatar and the antipode of the initial generatbr.

- - ~ R .
) =CoLy+e#*8xC - T(eZgB —1L)®A>’+hD®A  (3.21")
8
yu(C) = —e88C 4 f(lu — e %B)A2 L hee®BDA (3.23)
8

yu(D) = —e%8p 4 g(e—zé?B — 1) A. (3.237)
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Corollary 2. The coalgebra structure in the subalge&iggi is given as follows:
(i) comultiplication:

(A =A01+1y®A (3.25%)
(K = K* @ K* (3.2%)
h? 3
) =YK 1+KQY - 5z (K = KYH®AK ™ +hHQ AK™! (3.25%)
g
h

SyH)=HRK'+KQH+ - (K'-—K)® AK?! (3.25)
g

(i) co-unit:

ey(Z) =0 Z=A,Y H eu(Z) =1 Z=K,K' (3.26)

(iii) antipode:

Yu(A) = —A (3.27a)

y(K*) = K7 (3.2)
72

w(¥)=—K YK + %(K — K HA?+ hKk*HAK (3.27c)
g

vu(H)= —K*HK + Q(K—l — K)A. (3.27d)
g

3.5. Main result

Finally we can state the following:

Theorem 1.The Hopf algebralf, , dual to GL,;(2) is generated byA, B,Y, H (or
A,K,K71 Y, H), cf relations (3.11) and (3.17). It is given by relations (3.18), (3.21),
(3.22), (3.23), (resp. (3.20), (3.25), (3.26), (3.27)). As an algebra it depends only on one
parameterg = (g + h)/2 and is split into two subalgebras?, , (resp.l, ,) generated
by B,Y, H (resp.K, K1, Y, H) and U (Z), where the algebréf is spanned byA. The
subalgebraU(Z) is central ini{, , and is also a Hopf subalgebra&@f ,. The subalgebra

. (resp.U, ;) is not a Hopf subalgebra.

Proof. Actually this statement is summarizing our results in this section, cf propositions 1
and 2, and the basis change (3.17). It remains only to notdth&) is a Hopf subalgebra
since A commutes with the other generators and its Hopf algebra operations are in terms of
A itself. The subalgebra generated &y, (resp. u’ 1) Is not a Hopf subalgebra since the
generatorA takes part in formulae (3. 2), (3.21d), (3 2%), (3.23) (resp. (3.26), (3.29),

(3.27), (3.2°M)). O

4. One-parameter cases

It is interesting to discuss the one-parameter special cases of the matrix quantum group
GL, (2) and its dual.
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4.1. Caseg =h

The one-parameter matrix quantum groG;(2) [2, 3], is obtained fromGL, ;(2) by
settingg = h = g. Thus the dual algebrél; = U; ; of GL;(2) is obtained by setting
h= %(g —h) =0in (3.18), (3.21), (3.22), (3.23). Since the commutation relations (3.18)
and the co-unit relations (3.22) do not dependiothey remain unchanged férf;. The
coproduct and antipode relations i are:

(A=A +1u®A (4.19)
SuB)=B® 1, +1,®B (4.1b)
suV)=Ye? e gy (4.1c)
SuH)=H®e?® +e&f o H (4.1d)
Yu(A) = —A (4.29)
yu(B) = —B (4.20)
w(Y) = —e 8Byeib (4.%)
yu(H) = —e 8P HedP, (4.d)

We see that the one-parameter Hopf algélyyés split into two Hopf subalgebrda% = Z/{;g
andU (Z) and we may write:

Uy =U, @ U(2). (4.3)

Now we compare the algebtd with the algebra of [6]. We see that after the identification
B— X, g— — h, the algebra relations (3.48 (3.1&), (3.1&) and the coalgebra relations
(4.1b), (4.1c), (4.1d), (3.22), (4.D), (4.Z), (4.2) coincide with their counterparts in [6],
i.e. the algebrd{; coincides with the algebra of Ohn. We also note that the alg&bria
the basisB, C, D (cf (3.12a), (3.12), (3.12), (3.21), (3.21"), (3.21d"), (3.22), (3.2B),
(3.23), (3.237")) coincides forh = 0 with the version given in [10] after the identification:
(B,C, D; §)— (A4, A_, A; z), and by using the opposite coalgebra structure.

4.2. Caseg = —h

Here we consider another one-parameter case: —h = h, i.e. § = 0. From (3.18),
(3.21), (3.23), we obtain:

[B,Y]=H (4.43)
[H, B] = 2B (4.4b)
[H Y] =-2Y (4.4c)
[A,B] =0 [A,Y]=0 [A,H] =0 (4.4d)
(A=A 1L+ 1, ®A (4.53)
SuB)=B® 1, +1,®B (4.50)
N =Y®1+1, QY —h’BRA>’+hH® A (4.5)
Su(H)=H®1l+1y®H—-2"B® A (4.5d)
yu(A) = —A (4.6a)
Yu(B) = —B (4.60)
yu(Y)=—Y +h*BA> 4+ hHA (4.60)

vu(H) = —H — 2hBA. (4.6d)
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Thus, forg = 0 the interesting feature is that the subalgezafla_ﬁ is isomorphic to the
undeformedU (s1(2)) with s/(2) spanned byB, Y, H. However, as in the general case, the
coalgebra sector is not classical, and the generdtpis H do not close a co-subalgebra.
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Appendix. Application of a nonlinear map

In [12] a nonlinear map was proposed under which the one-parameter Ohn’s algebra was
brought to undeformed!(2) form, though, the coalgebra structure becomes even more
complicated, cf [13] and [14]. Since our two-parameter dual is like Ohn’s algebra in the
algebra sector we can also apply the map of [12], which we do in this appendix. We give
the map in our notation, namely, following (28) and (33) of [12] we set:

b= ( 5 A ;( ) : x5, (A.1a)
I = cosh<g2B> Ycosh(gZB> = 211(1(1/2 + K V2)y (kY2 + K~Y?), (A.1b)

Then we have, as in [12] for the casg(si(2)), (note though that we do not rescal®
the classicak!/(2) commutation relations and Casimir:

[H» I:t] =:|:21:|: [I+717] =H [Avlﬂ:] =[A7H] =O (AZ)
Cs = fL(A)CS + fa(A) Co=1I.1_+1_I,+3iH? (A.3)
Of course, our aim is to write the coproducts. Actually, forwe use (4.5) of [14] (sincé™

is expressed througB which has the (parameter-independent) classical coproductb]3.21
as in the one-parameter case) which in our notation gives:

00 ~2\"
Sul) =1 @1y +1u®L + Y (—‘Z) I I+ 1M 1. (A.4)
n=1
For the co-product oH we need the inverse of (Aal (cf [13, equation (3.1)]):
. < g\ 51
K =e®f =1, 42)" <igl+) <= 1112*) . (A.5)
=\ 2 ¥l

Then we have using (3.8t

Sy(H) = H®1u+1u®H+22<H® (—‘;u) + (f’z'u) ®H>
n=1

o0 ~ 2k o0 ~ £
21,y (‘;u) ® A <1u +2)° (—52’1+> ) . (A.6)
k=0 =1

For the coproduct of_ we use (3.2¢&) and:

Sy(I-) = 8y (cosh(ilg)) Sy (Y) &y (cosh(‘?)) (A.79)
§BY\ _ gB gB . gB , gB
Su (cosh(z)) = cosh<2> ® cosh(z) + smh(z) ® smh<2> (A.7b)
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to obtain:

o0 ~ ¢ 00 ~ ¢
() =1-®) (€+1) <—§1+> +Y @+ <§1+) Q1 —
=0 =0

In the special casé = 0 the coproducts o and I_ coincide with the one-parameter
formulae of [13], cf (3.2) and (5.3), resp., (with— — h).
nonlinear map becomes an identity and naturally the coprodudts, df., H, coincide with

N | 0%

(I 1+ 1,1)

o0 g ¢ gz
p <1+) ® (Il + 14l + " LIy

8
=1 2(:1 2
o) ~ 4
®Z(z—1)( §1+> Z(Z—l)( )@uu+
=2
_ﬁ2{1+®A2}{;(k+1) gu) ®11,{+Z< 1+> Z‘( 1+)
00 ~ k 00 ~ 12
+) (k+1) <—§I+> ®Ze(—52'1+> }+ﬁ{1u®A}{[H®1u]
k=0 =1
o) ~ 2k %) ~ 12
X[Z(gh,_) ®1u+1u®2(£+1)<—g1+>
k=0 2 =1 2
00 ~ k ) ~ 4
+22<—g1+> ®Ze(—g1+> ]
k=1 2 =1 2
—2[2k(—§[+> 1U+Zk( 1+) ®Ze< )“ (A.8)
k=1

those ofB, Y, H, resp., cf (4.5), (4.5), (4.5d).
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