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Abstract. We find the Hopf algebraUg,h dual to the Jordanian matrix quantum groupGLg,h(2).
As an algebra it depends only on the sum of the two parameters and is split into two subalgebras:
U ′g,h (with three generators) andU(Z) (with one generator). The subalgebraU(Z) is a central
Hopf subalgebra ofUg,h. The subalgebraU ′g,h is not a Hopf subalgebra and its co-algebra
structure depends on both parameters. We discuss also two one-parameter special cases:g = h
andg = −h. The subalgebraU ′h,h is a Hopf algebra and coincides with the algebra introduced
by Ohn as the dual ofSLh(2). The subalgebraU ′−h,h is isomorphic toU(sl(2)) as an algebra
but has a nontrivial co-algebra structure and again is not a Hopf subalgebra ofU−h,h.

1. Introduction

The groupGL(2) admits two distinct quantum group deformations with a central quantum
determinant:GLq(2) [1] andGLh(2) [2, 3]. These are the only possible such deformations
(up to isomorphism) [4]. Both may be viewed as special cases of two-parameter
deformations:GLp,q(2) [2] and GLg,h(2) [5]. In the initial years of the development
of quantum group theory mostlyGLq(2) andGLp,q(2) were considered. More recently
research has been started onSLh(2) and its dual quantum algebraUh(sl(2)) [6]. In
particular, aspects of differential calculus [5], and differential geometry [7] were developed,
the universalR-matrix for Uh(sl(2)) was given in [8–10], representations ofUh(sl(2))
were constructed in [11–14], contractions ofSLh(2) and Uh(sl(2)) were given in [15].
However, there are no studies until now of the two-parameter Jordanian matrix quantum
groupGLg,h(2). Even the dual of this algebra is not known.

This is the problem we solve in this paper. We find the Hopf algebraUg,h dual to
the Jordanian matrix quantum groupGLg,h(2). As an algebra it depends on the sum
g̃ = (g + h)/2 of the two parameters and is split into two subalgebras:U ′g,h (with
three generators) andU(Z) (with one generator). The subalgebraU(Z) is a central Hopf
subalgebra ofUg,h. The subalgebraU ′g,h is not a Hopf subalgebra and its coalgebra structure
depends on both parameters. We discuss also two interesting one-parameter special cases:
g = h andg = −h. The subalgebraU ′h,h is a Hopf algebra and coincides with the algebra
introduced by Ohn as the dual ofSLh(2). The subalgebraU ′−h,h is isomorphic toU(sl(2))
as an algebra but has a nontrivial coalgebra structure and again is not a Hopf subalgebra of
U−h,h.
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The paper is organized as follows. In section 2 we recall the groupGLg,h(2). In
section 3 we first recall the method (developed by one of us) of finding the dual. We
then make a change of generators and introduce the appropriate PBW basis inGLg,h(2).
We find the dual algebraUg,h and we give explicitly its algebra and coalgebra structure in
propositions 1 and 2. We make a further change of basis in order to bring the algebra to a
form closer to Ohn’s [6]. Our main result is summarized in a theorem. We also introduce a
subalgebraŨg,h of Ug,h with a basis such that no exponents of generators appear explicitly
in the algebra and coalgebra relations. In section 4 we consider the two interesting one-
parameter special cases:g = h andg = −h recovering the algebra of [6] in the first special
case. In the appendix we apply the nonlinear map of [12] to our dual algebra.

2. Jordanian matrix quantum group GLg,h(2)

In this section we recall the Jordanian two-parameter deformationGLg,h(2) of GL(2)
introduced in [5] (and denotedGLh,h′ ). One starts with a unital associative algebra generated

by four elementsa, b, c, d of a quantum matrixM =
(
a b

c d

)
with the following relations

(g, h ∈ C):

[a, c] = gc2 [d, c] = hc2 [a, d] = gdc − hac
[a, b] = h(D − a2) [d, b] = g(D − d2) [b, c] = gdc + hac − ghc2

D = ad − bc + hac = ad − cb − gdc + ghc2

(2.1)

whereD is a multiplicative quantum determinant which is not central (unlessg = h):

[a,D] = [D, d] = (g − h)Dc [b,D] = (g − h)(Dd − aD) [c,D] = 0. (2.2)

Relations (2.1) are obtained by applying either the method of Faddeevet al [16], namely,
by solving the monodromy equation:

RM1M2 = M2M1R

(M1 = M⊗̂I2, M2 = I2⊗̂M), with the R matrix:

R =


1 −h h gh

0 1 0 −g
0 0 1 g

0 0 0 1

 (2.3)

or the method of Manin [17] usingM as transformation matrix of the appropriate quantum
planes [5].

The above algebra is turned into a bialgebraAg,h(2) with the standardGL(2) co-product
δ and co-unitε:

δ

((
a b

c d

))
=
(
a ⊗ a + b ⊗ c a ⊗ b + b ⊗ d
c ⊗ a + d ⊗ c c ⊗ b + d ⊗ d

)
(2.4)

ε

((
a b

c d

))
=
(

1 0
0 1

)
. (2.5)

From (2.4), resp. (2.5) it follows:

δ(D) = D ⊗D ε(D) = 1. (2.6)

Further, we shall suppose thatD is invertible, i.e. there is an elementD−1 which obeys:

DD−1 = D−1D = 1A (D−1) = D−1⊗D−1 ε(D−1) = 1. (2.7)
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(Alternatively one may say that the algebra is extended with the elementD−1.) In this case
one defines the left and right inverse matrix ofM [5]:

M−1 = D−1

(
d + gc −b + g(d − a)+ g2c

−c a − gc
)

=
(
d + hc −b + h(d − a)+ h2c

−c a − hc
)
D−1. (2.8)

The quantum groupGLg,h(2) is definedas the Hopf algebra obtained from the bialgebra
Ag,h(2) whenD−1 exists and with antipode given by the formula:

γ (M) = M−1⇒ γ (D) = D−1 γ (D−1) = D. (2.9)

For g = h one obtains fromGLg,h(2) the matrix quantum groupGLh(2) = GLh,h(2),
and, if the conditionD = 1A holds, the matrix quantum groupSLh(2). Analogously, for
g = h = 0 one obtains fromGLg,h(2) the algebra of functions over the classical groups
GL(2) andSL(2), resp.

3. The dual ofGLg,h(2)

3.1. Summary of the method

Two bialgebrasU ,A are said to bein duality [18] if there exists a doubly nondegenerate
bilinear form

〈, 〉 : U ×A−→C 〈, 〉 : (u, a)7→〈u, a〉 u ∈ U a ∈ A (3.1)

such that, foru, v ∈ U , a, b ∈ A:

〈u, ab〉 = 〈δU (u), a ⊗ b〉 〈uv, a〉 = 〈u⊗ v, δA(a)〉 (3.2a)

〈1U , a〉 = εA(a) 〈u, 1A〉 = εU (u). (3.2b)

Two Hopf algebrasU ,A are said to bein duality [18] if they are in duality as bialgebras
and if

〈γU (u), a〉 = 〈u, γA(a)〉. (3.2c)

It is enough to define the pairing (3.1) between the generating elements of the two
algebras. The pairing between any other elements ofU ,A follows then from relations (3.2)
and the standard bilinear form inherited by the tensor product.

The duality between two bialgebras or Hopf algebras may be used also to obtain the
unknown dual of a known algebra; for that it is enough to give the pairing between the
generating elements of the unknown algebra with arbitrary elements of the PBW basis
of the known algebra. Using these initial pairings and the duality properties one may
find the unknown algebra. Such an approach was first given by Sudbery [19]. He
obtainedUq(sl(2))⊗ U(u(1)) as the algebra of tangent vectors at the identity ofGLq(2).
The initial pairings were defined through the tangent vectors at the identity. However,
such calculations become very difficult for more complicated algebras. Thus, in [20] a
generalization was proposed in which the initial pairings are postulated to be equal to the
classical undeformed results. This generalized method was applied in [20] to the standard
two-parameter deformationGLp,q(2), (where also Sudbery’s method was used), then in [21]
to the multiparameter deformation ofGL(n), and in [22] to the matrix quantum Lorentz
group of [23]. One should note that the dual ofGLp,q(2) was obtained also in [24] by
methods ofq-differential calculus.
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3.2. Change of basis forGLg,h(2) and generators of the dual algebra

In the present paper we apply the method of [20] to find the dual ofGLg,h(2). Following
[20] we first need to fix a PBW basis ofGLg,h(2). At first one may be inclined to use
a PBW basis as the one introduced in [6] for the caseg = h, namely consisting of all
monomialsakd`bmcn, wherek, `,m, n ∈ Z+ . (Actually, the basis in [6] is forSLh(2) and
is obtained by restricting to indices fulfillingk` = 0.) However, the calculation with such
a basis are more difficult. Our analysis showed that it would be simpler to work with the
following PBW basis:

akd`cnbm k, `,m, n ∈ Z+ (3.3)

the explanation being that the elementsa, d, c generate a subalgebra (though not a Hopf
subalgebra) ofGLg,h(2), cf the first line of (2.1). Further simplification results if we make
the following change of generating elements and parameters:

ã = 1
2(a + d) d̃ = 1

2(a − d)
g̃ = 1

2(g + h) h̃ = 1
2(g − h).

(3.4)

With these generating elements and parameters the algebra relations become:

cã = ãc − g̃c2 cd̃ = d̃c − h̃c2 d̃ã = ãd̃ − g̃d̃c + h̃ãc
bã = ãb + g̃cb − 2h̃ãd̃ + 2g̃d̃2+ (g̃2− h̃2)ãc + g̃(h̃2− g̃2)c2

bd̃ = d̃b − h̃cb + 2g̃ãd̃ − 2h̃d̃2+ (h̃2− g̃2)d̃c + h̃(g̃2− h̃2)c2

bc = cb + 2g̃ãc − 2h̃d̃c + (h̃2− g̃2)c2

D = ã2− d̃2− cb + (g̃2− h̃2)c2− g̃ãc + h̃d̃c.

(3.5)

Note that these relations are written in anticipation of the PBW basis:

f = fk,`,m,n = ãkd̃`cnbm k, `,m, n ∈ Z+. (3.6)

Note also that the relations in the subalgebras generated bya, d, c andã, d̃, c are isomorphic
under the change:a 7→ã, d 7→d̃, c 7→c, g 7→g̃, h7→h̃, cf the first lines in (2.1) and (3.5).

The co-algebra relations become:

δ

((
ã b

c d̃

))
=
(
ã ⊗ ã + d̃ ⊗ d̃ + 1

2b ⊗ c + 1
2c ⊗ b ã ⊗ b + d̃ ⊗ b + b ⊗ ã − b ⊗ d̃

c ⊗ ã + c ⊗ d̃ + ã ⊗ c − d̃ ⊗ c ã ⊗ d̃ + d̃ ⊗ ã + 1
2b ⊗ c − 1

2c ⊗ b
)

(3.7)

ε

((
ã b

c d̃

))
=
(

1 0
0 0

)
(3.8)

γ

((
ã b

c d̃

))
=D−1

(
ã − d̃ + (g̃ + h̃)c −b − 2(g̃ + h̃)d̃ + (g̃ + h̃)2c

−c ã + d̃ − (g̃ + h̃)c
)

=
(
ã − d̃ + (g̃ − h̃)c −b + 2(h̃− g̃)d̃ + (g̃ − h̃)2c

−c ã + d̃ + (h̃− g̃)c
)
D−1. (3.9)

Let us denote byUg,h = Ug,h(gl(2)) the unknown yet dual algebra ofGLg,h(2), and by
A,B,C,D the four generators ofUg,h. Following [20] we shall define the pairing〈Z, f 〉,
Z = A,B,C,D, f is from (3.6), as the classical tangent vector at the identity:

〈Z, f 〉 ≡ ε
(
∂f

∂y

)
(Z, y) = (A, ã), (B, b), (C, c), (D, d̃). (3.10)



Duality for the Jordanian matrix quantum groupGLg,h(2) 6773

From this we obtain the explicit expressions:

〈A, f 〉 = ε
(
∂f

∂ã

)
= kδ`0δm0δn0 (3.11a)

〈B, f 〉 = ε
(
∂f

∂b

)
= δ`0δm1δn0 (3.11b)

〈C, f 〉 = ε
(
∂f

∂c

)
= δ`0δm0δn1 (3.11c)

〈D, f 〉 = ε
(
∂f

∂d̃

)
= δ`1δm0δn0. (3.11d)

3.3. Algebra structure of the dual

First we find the commutation relations between the generators ofUg,h. Below we shall
need expressions like eνB which we define as formal power series eνB = 1U +

∑
p∈N

νp

p!B
p.

We have:

Proposition 1.The commutation relations of the generatorsA,B,C,D introduced by (3.11)
are:

[B,C] = D (3.12a)

[D,B] = 1

g̃
(e2g̃B − 1U ) (3.12b)

[D,C] = −2C + g̃D2− g̃A (3.12c)

[A,B] = 0 [A,C] = 0 [A,D] = 0. (3.12d)

Proof. Using the assumed duality the above relations are shown by calculating their
pairings with the basis monomialsf = ãkd̃`cnbm of the dual algebra. In particular, the
pairing of f = ãkd̃`cnbm with the commutators is:

〈[B,C], f 〉 = δ`1δm0δn0 (3.13a)

〈[D,B], f 〉 = δ`0θm1δn02mg̃m−1 (3.13b)

〈[D,C], f 〉 = −2δ`0δm0δn1+ 2g̃δ`2δm0δn0 (3.13c)

〈[A,B], f 〉 = 〈[A,C], f 〉 = 〈[A,D], f 〉 = 0 (3.13d)

θrs ≡
{

1 r > s
0 r < s.

(3.13e)

To calculate a commutator〈[W,Z], f 〉 one first calculates〈WZ, f 〉 and 〈ZW, f 〉. The
pairing of any quadratic monomial of the unknown dual algebra withf = ãkd̃`cnbm is
given by the duality properties (3.2):

〈WZ, f 〉 = 〈W ⊗ Z, δA(f )〉 =
〈
W ⊗ Z,

∑
j

f ′j ⊗ f ′′j
〉
=
∑
j

〈W,f ′j 〉〈Z, f ′′j 〉 (3.14)

wheref ′j , f ′′j are elements of the basis (3.6) and so further a direct application of (3.11)
is used. We should note that these calculations though complicated do not require explicit
knowledge ofδA(f ) =

∑
j f
′
j ⊗ f ′′j for all f , and furthermore not all terms in the sums

are necessary. In particular, while calculatingδA(f ) one may neglect terms containing
the elementc on either side of the tensor sign in second and higher degrees even before
reordering the terms to the basis monomials, since from the commutation relations it is clear
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that those terms will not produce any term withc in zero or first degree, and anyf ′j (f ′′j )
containingc in second and higher degrees will give zero in (3.14) for anyW (Z). For the
same reasons, ifW 6= C (Z 6= C) one may neglect terms containing the elementc on the
left (right) side of the tensor sign in the first degree even before reordering the terms to
the basis monomials. Similar reasons hold for the elementsd̃. Taking into account such
simplifications one may find the pairings of the quadratic monomials necessary for (3.13),
e.g.

〈BC, f 〉 = 1
2δ`1δm0δn0+ h̃δ`1δm1δn0+ δ`0δn0θm2

1
2(g̃

2− h̃2)g̃m−2+ δ`0δm1δn1 (3.15a)

〈CB, f 〉 = − 1
2δ`1δm0δn0+ h̃δ`1δm1δn0+ δ`0δn0θm2

1
2(g̃

2− h̃2)g̃m−2+ δ`0δm1δn1 (3.15b)

〈DB, f 〉 = δ`0δn0(δm1+ θm22m−1g̃m−2(g̃ − h̃)) (3.15c)

〈BD, f 〉 = −δ`0δn0(δm1+ θm22m−1g̃m−2(g̃ + h̃)) (3.15d)

〈DC, f 〉 = −δ`0δm0δn1+ (h̃+ g̃)δ`2δm0δn0+ kg̃δ`1δm0δn0+ δ`1δm0δn1 (3.15e)

〈CD, f 〉 = δ`0δm0δn1+ (h̃− g̃)δ`2δm0δn0+ kg̃δ`1δm0δn0+ δ`1δm0δn1. (3.15f)

Note that quadratic relations (3.15) depend on both parameters, while the commutation
relations (3.13), which follow from (3.15), depend only on the parameterg̃.

Now in order to establish (3.12a) it is enough to compare the RHS of (3.13a) and
(3.11d). Further, for relation (3.12b) we use (3.13b) and:

〈Bp, f 〉 = p!δ`0δmpδn0 (3.15h)

(proved by induction) and its consequence:

〈(e2g̃B − 1U ), f 〉 =
∑
p∈N

(2g̃)p

p!
〈Bp, f 〉 =

∑
p∈N

(2g̃)p

p!
p!δ`0δmpδn0 = (2g̃)mδ`0θm1δn0. (3.15i)

To establish (3.12c) we compare the RHS of (3.13c) with the appropriate linear combination
of the RHS of three equations, namely (3.11a), (3.11c) and

〈D2, f 〉 = 2δ`2δm0δn0+ kδ`0δm0δn0. (3.15g)

This finishes the proof. �

Note that the commutation relations (3.12) depend only on the parameterg̃ and that
the generatorA is central. This is similar to the situation of the dual algebraUp,q of the
standard matrix quantum groupGLp,q the commutation relations of which depend only on
the combinationq ′ = √pq and also one generator is central [24, 20]. Here the central
generator appears as a central extension but this is fictitious since this may be corrected by
a change of basis, namely, by replacing the generatorC by a generator̃C:

C = C̃ − g̃
2
A. (3.16)

With this only (3.12c) changes to:

[D, C̃] = −2C̃ + g̃D2. (3.12c′)

Besides this change we shall make a change of generating elements ofUg,h in order to
bring the commutation relations to a form closer to the algebra of [6]. Thus, we make the
following substitutions:

D = eµBHeνB (3.17a)

C = eµ
′BYeν

′B − g̃
2

sinh(g̃B)e(µ
′+ν ′)B − g̃

2
A. (3.17b)



Duality for the Jordanian matrix quantum groupGLg,h(2) 6775

Substituting (3.17) into (3.12a) we obtain the desired result [B, Y ] = H if we choose:µ′ =
µ, ν ′ = ν. Substituting (3.17) into (3.12b) we obtain the desired result [H,B] = 2

g̃
sinh(g̃B)

if we choose:µ+ ν = g̃. Thus with conditions:

µ+ ν = g̃ µ′ = µ ν ′ = ν (3.17c)

we obtain the following commutation relations instead of (3.12):

[B, Y ] = H (3.18a)

[H,B] = 2

g̃
sinh(g̃B) (3.18b)

[H, Y ] = −Y cosh(g̃B)− cosh(g̃B)Y

= −2Y cosh(g̃B)− g̃H sinh(g̃B)+ g̃ sinh(g̃B) cosh(g̃B) (3.18c)

[A,B] = 0 [A, Y ] = 0 [A,H ] = 0. (3.18d)

Note that relations (3.18a), (3.18b), (3.18c) coincide with those of the one-parameter algebra
of [6], (cf section 4.1), though the coalgebra structure is different as we shall see below.
We can use this coincidence to derive the Casimir operator ofUg,h:

Ĉ2 = f1(A)C2+ f2(A)

C2 = 1
2(H

2+ sinh2(g̃B))+ 1

g̃
(Y sinh(g̃B)+ sinh(g̃B)Y )

(3.19)

wheref1(A), f2(A) are arbitrary polynomials in the central generatorA. To derive (3.19)
it is enough to check that [C2, Z] = 0 for Z = B, Y,H . The latter follows also from the
fact [25] thatC2 is the Casimir of the one-parameter algebra of [6].

Finally we also write a subalgebrãUg,h of Ug,h with the basis:A, K = eg̃B = K+,
K−1 = e−g̃B = K−, Y , H , so that in terms ofA, K, K−1, Y , H no exponents of generators
appear in the algebra and coalgebra relations. Thus instead of (3.18) we have:

[K±, Y ] = ±g̃HK± ± g̃
2
(1U −K±2) (3.20a)

[H,K±] = K±2− 1U (3.20b)

[H, Y ] = −Y (K +K−1)+ g̃
2
H(K−1−K)+ g̃

4
(K2−K−2) (3.20c)

KK−1 = K−1K = 1U (3.20c′)
[A,K] = [A,K−1] = 0 [A, Y ] = 0 [A,H ] = 0. (3.20d)

3.4. Co-algebra structure of the dual

We turn now to the coalgebra structure ofUg,h. We have:

Proposition 2.(i) The comultiplication in the algebraUg,h is given by:

δU (A) = A⊗ 1U + 1U ⊗ A (3.21a)

δU (B) = B ⊗ 1U + 1U ⊗ B (3.21b)

δU (Y ) = Y ⊗ e−g̃B + eg̃B ⊗ Y − h̃
2

g̃
sinh(g̃B)⊗ A2e−g̃B + h̃H ⊗ Ae−g̃B (3.21c)

δU (H) = H ⊗ e−g̃B + eg̃B ⊗H − 2h̃

g̃
sinh(g̃B)⊗ Ae−g̃B . (3.21d)
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(ii) The co-unit relations inUg,h are given by:

εU (Z) = 0 Z = A,B, Y,H. (3.22)

(iii) The antipode in the algebraUg,h is given by:

γU (A) = −A (3.23a)

γU (B) = −B (3.23b)

γU (Y ) = −e−g̃BYeg̃B + h̃
2

g̃
sinh(g̃B)A2+ h̃e−g̃BHAeg̃B (3.23c)

γU (H) = −e−g̃BHeg̃B − 2h̃

g̃
sinh(g̃B)A. (3.23d)

Proof. (i) We use the duality property (3.2a), namely we have

〈Z, f1f2〉 = 〈δU (Z), f1⊗ f2〉
for every generatorZ of Ug,h and for everyf1, f2 ∈ GLg,h(2). Then we calculate separately
the LHS and RHS and comparing the results prove (3.21). The check of (3.21a), (3.21b) is
easy. Instead of (3.21c), (3.21d) we first find the coproduct of the original generatorsC,D:

δU (C) = C ⊗ 1U + e2g̃B ⊗ C + 1

2g̃
(e2g̃B − 1U )⊗ (g̃2A− h̃2A2)+ h̃D ⊗ A (3.21c′)

δU (D) = D ⊗ 1U + e2g̃B ⊗D + h̃
g̃
(1U − e2g̃B)⊗ A (3.21d ′)

and then (3.21c), (3.21d) follow. To check (3.21c′) the following choices are crucial:
(f1, f2) = (ãkd̃`cnbm, 1U ), (bm, c), (bm, ak), (d`, ak). To check (3.21d ′) the crucial choices
are: (f1, f2) = (ãkd̃`cnbm, 1U ), (bm, d), (bm, ak).

(ii) Formulae (3.22) follow fromεU (Z) = 〈Z, 1A〉, cf (3.2b), and using the defining
relations (3.11).

(iii) Formulae (3.23) follow from (3.2c) or by using the following Hopf algebra axiom
[18]:

m ◦ (id⊗ γU ) ◦ δU = i ◦ εU (3.24)

wherem is the usual product in the algebra:m(Z ⊗ W) = ZW,Z,W ∈ U and i is the
natural embedding ofF into U : i(ν) = ν1U , ν ∈ F . This is applied in our case with
U 7→Ug,h, F = C, to the elementsA,B, Y,H and using (3.21) and (3.22). �

Corollary 1. For later reference we mention also the coproduct and antipode of the
intermediate generator̃C and the antipode of the initial generatorD:

δU (C̃) = C̃ ⊗ 1U + e2g̃B ⊗ C̃ − h̃2

2g̃
(e2g̃B − 1U )⊗ A2+ h̃D ⊗ A (3.21c′′)

γU (C̃) = −e−2g̃BC̃ + h̃2

2g̃
(1U − e−2g̃B)A2+ h̃e−2g̃BDA (3.23c′)

γU (D) = −e−2g̃BD + h̃
g̃
(e−2g̃B − 1U )A. (3.23d ′)



Duality for the Jordanian matrix quantum groupGLg,h(2) 6777

Corollary 2. The coalgebra structure in the subalgebraŨg,h is given as follows:
(i) comultiplication:

δU (A) = A⊗ 1U + 1U ⊗ A (3.25a)

δU (K
±) = K± ⊗K± (3.25b)

δU (Y ) = Y ⊗K−1+K ⊗ Y − h̃2

2g̃
(K −K−1)⊗ A2K−1+ h̃H ⊗ AK−1 (3.25c)

δU (H) = H ⊗K−1+K ⊗H + h̃
g̃
(K−1−K)⊗ AK−1 (3.25d)

(ii) co-unit:

εU (Z) = 0 Z = A, Y,H εU (Z) = 1 Z = K,K−1 (3.26)

(iii) antipode:

γU (A) = −A (3.27a)

γU (K
±) = K∓ (3.27b)

γU (Y ) = −K−1YK + h̃2

2g̃
(K −K−1)A2+ h̃K−1HAK (3.27c)

γU (H) = −K−1HK + h̃
g̃
(K−1−K)A. (3.27d)

3.5. Main result

Finally we can state the following:

Theorem 1.The Hopf algebraUg,h dual to GLg,h(2) is generated byA,B, Y,H (or
A,K,K−1, Y,H ), cf relations (3.11) and (3.17). It is given by relations (3.18), (3.21),
(3.22), (3.23), (resp. (3.20), (3.25), (3.26), (3.27)). As an algebra it depends only on one
parameterg̃ = (g + h)/2 and is split into two subalgebras:U ′g,h (resp. Ũ ′g,h) generated
by B, Y,H (resp.K,K−1, Y,H ) andU(Z), where the algebraZ is spanned byA. The
subalgebraU(Z) is central inUg,h and is also a Hopf subalgebra ofUg,h. The subalgebra
U ′g,h (resp. Ũ ′g,h) is not a Hopf subalgebra.

Proof. Actually this statement is summarizing our results in this section, cf propositions 1
and 2, and the basis change (3.17). It remains only to note thatU(Z) is a Hopf subalgebra
sinceA commutes with the other generators and its Hopf algebra operations are in terms of
A itself. The subalgebra generated byU ′g,h (resp. Ũ ′g,h) is not a Hopf subalgebra since the
generatorA takes part in formulae (3.21c), (3.21d), (3.23c), (3.23d) (resp. (3.25c), (3.25d),
(3.27c), (3.27d)). �

4. One-parameter cases

It is interesting to discuss the one-parameter special cases of the matrix quantum group
GLg,h(2) and its dual.



6778 B L Aneva et al

4.1. Caseg = h
The one-parameter matrix quantum groupGLg̃(2) [2, 3], is obtained fromGLg,h(2) by
settingg = h = g̃. Thus the dual algebraUg̃ ≡ Ug̃,g̃ of GLg̃(2) is obtained by setting
h̃ = 1

2(g − h) = 0 in (3.18), (3.21), (3.22), (3.23). Since the commutation relations (3.18)
and the co-unit relations (3.22) do not depend onh̃ they remain unchanged forUg̃. The
coproduct and antipode relations ofUg̃ are:

δU (A) = A⊗ 1U + 1U ⊗ A (4.1a)

δU (B) = B ⊗ 1U + 1U ⊗ B (4.1b)

δU (Y ) = Y ⊗ e−g̃B + eg̃B ⊗ Y (4.1c)

δU (H) = H ⊗ e−g̃B + eg̃B ⊗H (4.1d)

γU (A) = −A (4.2a)

γU (B) = −B (4.2b)

γU (Y ) = −e−g̃BYeg̃B (4.2c)

γU (H) = −e−g̃BHeg̃B . (4.2d)

We see that the one-parameter Hopf algebraUg̃ is split into two Hopf subalgebrasU ′
g̃
≡ U ′

g̃,g̃

andU(Z) and we may write:

Ug̃ = U ′g̃ ⊗ U(Z). (4.3)

Now we compare the algebraU ′
g̃

with the algebra of [6]. We see that after the identification
B 7→X, g̃ 7→ − h, the algebra relations (3.18a), (3.18b), (3.18c) and the coalgebra relations
(4.1b), (4.1c), (4.1d), (3.22), (4.2b), (4.2c), (4.2d) coincide with their counterparts in [6],
i.e. the algebraU ′

g̃
coincides with the algebra of Ohn. We also note that the algebraU ′

g̃
in

the basisB, C̃,D (cf (3.12a), (3.12b), (3.12c′), (3.21b), (3.21c′′), (3.21d ′), (3.22), (3.23b),
(3.23c′), (3.23d ′)) coincides forh̃ = 0 with the version given in [10] after the identification:
(B, C̃,D; g̃)7→(A+, A−, A; z), and by using the opposite coalgebra structure.

4.2. Caseg = −h
Here we consider another one-parameter case:g = −h = h̃, i.e. g̃ = 0. From (3.18),
(3.21), (3.23), we obtain:

[B, Y ] = H (4.4a)

[H,B] = 2B (4.4b)

[H, Y ] = −2Y (4.4c)

[A,B] = 0 [A, Y ] = 0 [A,H ] = 0 (4.4d)

δU (A) = A⊗ 1U + 1U ⊗ A (4.5a)

δU (B) = B ⊗ 1U + 1U ⊗ B (4.5b)

δU (Y ) = Y ⊗ 1U + 1U ⊗ Y − h̃2B ⊗ A2+ h̃H ⊗ A (4.5c)

δU (H) = H ⊗ 1U + 1U ⊗H − 2h̃B ⊗ A (4.5d)

γU (A) = −A (4.6a)

γU (B) = −B (4.6b)

γU (Y ) = −Y + h̃2BA2+ h̃HA (4.6c)

γU (H) = −H − 2h̃BA. (4.6d)
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Thus, for g̃ = 0 the interesting feature is that the subalgebraU ′
h̃,−h̃ is isomorphic to the

undeformedU(sl(2)) with sl(2) spanned byB, Y,H . However, as in the general case, the
coalgebra sector is not classical, and the generatorsB, Y,H do not close a co-subalgebra.
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Appendix. Application of a nonlinear map

In [12] a nonlinear map was proposed under which the one-parameter Ohn’s algebra was
brought to undeformedsl(2) form, though, the coalgebra structure becomes even more
complicated, cf [13] and [14]. Since our two-parameter dual is like Ohn’s algebra in the
algebra sector we can also apply the map of [12], which we do in this appendix. We give
the map in our notation, namely, following (28) and (33) of [12] we set:

I+ = 2

g̃
tanh

(
g̃B

2

)
= −2

g̃

(
1U + 2

∞∑
`=1

(−K)`
)(
= 2

g̃

(
K − 1U
K + 1U

))
(A.1a)

I− = cosh

(
g̃B

2

)
Y cosh

(
g̃B

2

)
= 1

4
(K1/2+K−1/2)Y (K1/2+K−1/2). (A.1b)

Then we have, as in [12] for the caseUh(sl(2)), (note though that we do not rescaleH )
the classicalgl(2) commutation relations and Casimir:

[H, I±] = ±2I± [I+, I−] = H [A, I±] = [A,H ] = 0 (A.2)

Ĉc2 = f1(A)Cc2 + f2(A) Cc2 = I+I− + I−I+ + 1
2H

2. (A.3)

Of course, our aim is to write the coproducts. Actually, forI+ we use (4.5) of [14] (sinceI+

is expressed throughB which has the (parameter-independent) classical coproduct (3.21b)
as in the one-parameter case) which in our notation gives:

δU (I+) = I+ ⊗ 1U + 1U ⊗ I+ +
∞∑
n=1

(
− g̃

2

4

)n
(I n+1
+ ⊗ I n+ + I n+ ⊗ I n+1

+ ). (A.4)

For the co-product ofH we need the inverse of (A.1a) (cf [13, equation (3.1)]):

K±1 = e±g̃B = 1U + 2
∞∑
`=1

(
± g̃

2
I+

)̀ (
= 1U ± g̃

2I+
1U ∓ g̃

2I+

)
. (A.5)

Then we have using (3.21d):

δU (H) = H ⊗ 1U + 1U ⊗H + 2
∞∑
n=1

(
H ⊗

(
− g̃

2
I+

)n
+
(
g̃

2
I+

)n
⊗H

)

−2h̃I+
∞∑
k=0

(
g̃

2
I+

)2k

⊗ A
(

1U + 2
∞∑
`=1

(
− g̃

2
I+

)`)
. (A.6)

For the coproduct ofI− we use (3.21c) and:

δU (I−) = δU
(

cosh

(
g̃B

2

))
δU (Y ) δU

(
cosh

(
g̃B

2

))
(A.7a)

δU

(
cosh

(
g̃B

2

))
= cosh

(
g̃B

2

)
⊗ cosh

(
g̃B

2

)
+ sinh

(
g̃B

2

)
⊗ sinh

(
g̃B

2

)
(A.7b)
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to obtain:

δU (I−) = I− ⊗
∞∑
`=0

(`+ 1)

(
− g̃

2
I+

)̀
+
∞∑
`=0

(`+ 1)

(
g̃

2
I+

)̀
⊗ I− − g̃

2
(I+I− + I+I−)

⊗
∞∑
`=1

`

(
− g̃

2
I+

)̀
+ g̃

2

∞∑
`=1

`

(
g̃

2
I+

)̀
⊗ (I+I− + I+I−)+ g̃

2

4
I+I−I+

⊗
∞∑
`=2

(`− 1)

(
− g̃

2
I+

)̀
+ g̃

2

4

∞∑
`=2

(`− 1)

(
g̃

2
I+

)̀
⊗ I+I−I+

−h̃2{I+ ⊗ A2}
{ ∞∑
k=0

(k + 1)

(
g̃

2
I+

)2k

⊗ 1U +
∞∑
k=0

(
g̃

2
I+

)2k

⊗
∞∑
`=1

(
− g̃

2
I+

)̀

+
∞∑
k=0

(k + 1)

(
− g̃

2
I+

)k
⊗
∞∑
`=1

`

(
− g̃

2
I+

)̀ }
+ h̃{1U ⊗ A}

{
[H ⊗ 1U ]

×
[ ∞∑
k=0

(
g̃

2
I+

)2k

⊗ 1U + 1U ⊗
∞∑
`=1

(`+ 1)

(
− g̃

2
I+

)̀

+2
∞∑
k=1

(
− g̃

2
I+

)k
⊗
∞∑
`=1

`

(
− g̃

2
I+

)̀ ]

−2

[ ∞∑
k=1

k

(
− g̃

2
I+

)2k

⊗ 1U +
∞∑
k=1

k

(
− g̃

2
I+

)k
⊗
∞∑
`=1

`

(
− g̃

2
I+

)̀ ]}
. (A.8)

In the special casẽh = 0 the coproducts ofH and I− coincide with the one-parameter
formulae of [13], cf (3.2) and (5.3), resp., (with̃g 7→ − h). In the special casẽg = 0 the
nonlinear map becomes an identity and naturally the coproducts ofI+, I−, H , coincide with
those ofB, Y , H , resp., cf (4.5b), (4.5c), (4.5d).
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